Influence of Solvent on the Chiral Resolution of Organic Molecules on Au(111): EC-STM Study of Biphenyl Dicarboxylic Acid on Au(111) in an Aqueous Environment
نویسندگان
چکیده
Adsorption-induced chiral resolution of organic molecules is important due to its potential applications in stereo-selective catalysis. We studied the adsorption-induced chiral resolution using a model achiral molecule of 4,4’ biphenyl dicarboxylic acid (BPDA) on Au(111) in 0.1 M perchloric acid (HClO4) by electrochemical scanning tunneling microscopy (EC-STM). Our experimental data showed that the BPDA molecules formed island structures with distinctive preferred orientations at the length scale of the molecular size. The molecules did not show any orientational ordering above the length scale, indicating that chiral resolution was absent in the aqueous environment. Previously, the molecules were found to have chiral resolution on Au(111) in ultra-high vacuum conditions (UHV). We calculated angle-dependent binding energy between the substrate and a BPDA molecule, the intermolecular interactions between the BPDA molecules, and their interactions with water molecules. The calculations suggest that the absence of chiral resolution in the aqueous environment originated from the decrease in the intermolecular energy of the BPDA molecules due to their hydrogen bonds with the surrounding water molecules. The strength of the hydrogen bonding between BPDA molecules was sufficient to overcome the energy barrier for chiral resolution through rotational motion in UHV, but not in an aqueous environment.
منابع مشابه
Packing of Isophthalate Tetracarboxylic Acids on Au(111): Rows and Disordered Herringbone Structures
Scanning tunnelling microscopy (STM) has been used to investigate the formation of hydrogen-bonded structures of the isophthalate tetracarboxylic acids, biphenyl-3,3',5,5'-tetracarboxylic acid (BPTC), terphenyl-3,3″,5,5″-tetracarboxylic acid (TPTC), and quarterphenyl-3,3‴,5,5‴-tetracarboxylic acid (QPTC), via deposition from solution onto Au(111). STM data reveal that ordered structures can be ...
متن کاملSTM Study of Terephthalic Acid Self-Assembly on Au(111): Hydrogen-Bonded Sheets on an Inhomogeneous Substrate†
The adsorption and ordering of the molecule terephthalic acid (TPA), 1,4-benzene-dicarboxylic acid C6H4(COOH)2, on the reconstructed Au(111) surface has been studied in situ in ultrahigh vacuum by scanning tunneling microscopy (STM) at room temperature. Two-dimensional (2D) self-assembled supramolecular domains evolve, wherein the well-known one-dimensional (1D) carboxyl H-bond pairing scheme i...
متن کاملSelf-assembled monolayers of aromatic selenolates on noble metal substrates.
Self-assembled monolayers (SAMs) formed from bis(biphenyl-4-yl) diselenide (BBPDSe) on Au(111) and Ag(111) substrates have been characterized by high-resolution X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, infrared reflection absorption spectroscopy, water contact angle measurements, and scanning tunneling microscopy (STM). BBPDSe was found to form c...
متن کاملSelf-assembly of insoluble porphyrins on Au(111) under aqueous electrochemical control.
Self-assembled monolayers of a water-insoluble porphyrin, tetraphenyl porphyrin (TPP), in the presence of an aqueous electrolyte were characterized in situ with electrochemical scanning tunneling microscopy (EC-STM) at working electrode potentials of between 0.5 and -0.2 V. Isolated domains of TPP monolayers with differing orientation were observed on Au(111) in 0.1 M HClO(4) over this entire p...
متن کاملNaphtho[2,3-a]pyrene forms chiral domains on Au111.
Chiral domains have been prepared by evaporation of a two-dimensionally chiral molecule, naphtho[2,3-a]pyrene (NP), onto the hexagonal Au(111) surface in an ultrahigh vacuum environment. High-resolution UHV scanning tunneling microscopy (STM) showed that NP formed chiral domains consisting of only one 2D enantiomer rather than racemic two-dimensional unit cells. A structural model is proposed t...
متن کامل